Membrane Proteins

Membrane proteins make up between 20% and 30% of all expressed proteins. They are of great interest within the field of structural biology and pharmaceutical drug development, as they represent more than half of all present-day drug targets. Membrane proteins have hydrophobic exteriors, are relatively dynamic, and are produced at relatively low levels. Although these factors create difficulties in obtaining stable preparations for NMR analyses, phospholipids and detergents can be utilized to ensure proper solubilization and stability when studying membrane proteins. Despite the significant functional importance of membrane proteins, determining structures for these is much more challenging than for globular proteins. Fortunately, there are many sample preparation conditions that can be chosen for both solution and solid state NMR.

Cambridge Isotope Laboratories, Inc. offers deuterated phospholipids and detergents manufactured by FB Reagents for NMR-based scientific research of membrane proteins.

Stable Isotopes for Biomolecular NMR

Buffers, Reagents, Lipids and Detergents view all

Related Products

Frequently Asked Question

What are the benefits of using deuterated phospholipids? Using deuterated detergents and phospholipids allows for simplification of 1H-NMR spectrum as well as easier detection of signals from biomolecules in multidimensional NMR experiments. Additionally, they allow for minimization of dipolar relaxation effects, which in turn leads to signal enhancement in certain systems.

Example References

Movelan, K.T.; Wegstroth, M.; Overkamp, K.; et al. 2020. Imidazole-imidazole hydrogen bonding in the pH-densing histidine side chains of influenza A M2. J Am Chem Soc, 142(6), 2704-2708. PMID: 31970979 
Bibow, S. 2019. Opportunities and challenges of backbone, sidechain and RDC experiments to study membrane protein dynamics in a detergent-free lipid environment using solution state NMR. Front Mol Biosci, 6, 103. PMID: 31709261
Eddy, M.T.; Yu, T.Y.; Wagner, G.; et al. 2019. Structural characterization of the human membrane protein VDAC2 in lipid bilayers by MAS NMR. J Biomol NMR, 73(8-9), 451-460. PMID: 31407201
Bayrhuber, M.; Maslennikov, I.; Kwiatkowski, W.; et al.  2019. NMR solution structure and functional behavior of the human proton channel. Biochemistry, 58(39), 4017-4027. PMID: 31365236
Toyama, Y.; Shimada, I. 2019. Frequency selective coherence transfer NMR spectroscopy to study the structural dynamics of high molecular weight proteins. J Mag Res, 304, 62-67. PMID: 31129430
Brazin, K.N.; Mallis, R.J.; Boeszoermenyi, A.; et al. 2018. The T cell antigen receptor a transmembrane domain coordinates triggering through regulation of bilayer immersion and CD3 subunit associations. Immunity, 49(5), 829-841. PMID: 30389415
O'Brien, E.S.; Lin, D.W.; Fuglestad, B.; et al. 2018. Improving yields of deuterated, methyl labeled protein by growing in H2O. J Biomol NMR, 71(4), 263-273 . PMID: 30073492
Hagn, F.; Nasr, M.L.; Wagner, G. 2018. Assembly of phospholipid nanodiscs of controlled size for structural studies of membrane proteins by NMR. Nat Protoc, 13(1), 79-98. PMID: 29215632
Arenas, R.C.; Danielczak, B.; Martel, A.; et al. 2017. Fast collisional lipid transfer among polymer-bounded nanodiscs. Scientific Reports, 7, 45875. PMID: 28378790
Bibow, S.; Polyhach, Y.; Eichmann, C.; et al. 2017. Solution structure of discoidal high-density lipoprotein particles with a shortened apolipoprotein A-I. Nat Struct Mol Biol, 24(24), 187-193. PMID: 28024148
Laguerre, A.; Lõhr, F.; Henrich, E.; et al. 2016. From nanodiscs to isotropic bicelles: a procedure for solution NMR studies of detergent sensitive integral membrane proteins. Structure, 24(10), 1830-1841. PMID: 27618661
Bugge, K.; Papaleo, E.; Haxholm, G.W.; et al. 2016. A combined computational and structural model of the full-length human prolactin receptor. Nat Commun, 7, 11578. PMID: 27174498
Hagn, F.; Etzkorn, M.; Raschle, T.; et al. 2013. Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc, 135(5), 1919-1925. PMID: 23294159